Intersection multiplicities over Gorenstein rings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersection Multiplicities over Gorenstein Rings

LetR be a complete local ring of dimension d over a perfect field of prime characteristic p, and let M be an R-module of finite length and finite projective dimension. S. Dutta showed that the equality limn→∞ `(F n R(M)) pnd = `(M) holds when the ring R is a complete intersection or a Gorenstein ring of dimension at most 3. We construct a module over a Gorenstein ring R of dimension five for wh...

متن کامل

GENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS

Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.

متن کامل

Periodic modules over Gorenstein local rings

It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t ±1 ]-module associated to R. This module, denoted J(R), is the free Z[t ±1 ]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The ...

متن کامل

The Gorenstein and Complete Intersection Properties of Associated Graded Rings

Let I be an m-primary ideal of a Noetherian local ring (R,m). We consider the Gorenstein and complete intersection properties of the associated graded ring G(I) and the fiber cone F (I) of I as reflected in their defining ideals as homomorphic images of polynomial rings over R/I and R/m respectively. In case all the higher conormal modules of I are free over R/I , we observe that: (i) G(I) is C...

متن کامل

Vanishing of Cohomology over Gorenstein Rings of Small Codimension

We prove that if M , N are finite modules over a Gorenstein local ring R of codimension at most 4, then the vanishing of Ext R (M,N) for n ≫ 0 is equivalent to the vanishing of Ext R (N,M) for n ≫ 0. Furthermore, if b R has no embedded deformation, then such vanishing occurs if and only if M or N has finite projective dimension.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2000

ISSN: 0025-5831,1432-1807

DOI: 10.1007/s002080050362